Оптимізація Cash Flow в мережі банкоматів

Замовник

Галузь

масштаб

Міжнародний банк

Фінансовий сектор

≥500 банкоматів
≥1000 співробітників

Замовник

Міжнародний банк

Галузь

Фінансовий сектор

масштаб

≥500 банкоматів
≥1000 співробітників


Зниження операційних витрат на забезпечення банкоматів готівкою.


Для аналізу даних були взяті реальні добові дані зняття готівки у банкоматі. При побудові ML-моделі використовувався Gradient Boosting Regressor.
Рішення включало три етапи. Перший етап складався з:

оцінки даних; визначення вимог і критеріїв успіху; завантаження, деперсоналізації і збагачення даних; угоди про процедуру експерименту.

Другий етап полягав у:

сегментації об’єктів дослідження; навчанні, тестуванні та оцінці якості моделі.

На третьому етапі були реалізовані:

автоматизоване завантаження даних або розгортання моделі в середовищі замовника; регулярний контроль якості шляхом А / В тестування; технічна підтримка моделі і оптимізація під час надходження нових даних.


Реалізовано автоматичне прогнозування попиту на готівку з похибкою в межах 0,01-3,5%.
Досягнуто зниження операційних витрат: обсягу виділених коштів до 30%, кешбека – до 40%, часу простою “out-of-cash” – до 0,2%.

 

Прошу надіслати повну версію кейса:




    Інші кейси: